Queens$506871$ - определение. Что такое Queens$506871$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Queens$506871$ - определение

FEDERAL ELECTORAL DISTRICT OF CANADA
Queens--Lunenburg; Queens–Lunenburg; Queens-Lunenburg

Eight queens puzzle         
  • min-conflicts]] solution to 8 queens
MATHEMATICAL CHESS PROBLEM OF PLACING EIGHT CHESS QUEENS ON AN 8×8 CHESSBOARD SO THAT NO TWO QUEENS THREATEN EACH OTHER
8 queens problem; 8 queens puzzle; Eight queens problem; 8 queens; N-queens problem; N queens puzzle; N-queens; Eight-queens problem; N queens; N queens problem; Chessboard quiz; Eight queens; Queens problem; Eight queen problem; 8-Queens Problem; N Queens; Nqueens; Queen's independence problem; Eight-queens puzzle; N-Queens problem; Eight Queens puzzle; N-Queens; 8-queens
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions.
8 queens puzzle         
  • min-conflicts]] solution to 8 queens
MATHEMATICAL CHESS PROBLEM OF PLACING EIGHT CHESS QUEENS ON AN 8×8 CHESSBOARD SO THAT NO TWO QUEENS THREATEN EACH OTHER
8 queens problem; 8 queens puzzle; Eight queens problem; 8 queens; N-queens problem; N queens puzzle; N-queens; Eight-queens problem; N queens; N queens problem; Chessboard quiz; Eight queens; Queens problem; Eight queen problem; 8-Queens Problem; N Queens; Nqueens; Queen's independence problem; Eight-queens puzzle; N-Queens problem; Eight Queens puzzle; N-Queens; 8-queens
eight queens puzzle         
  • min-conflicts]] solution to 8 queens
MATHEMATICAL CHESS PROBLEM OF PLACING EIGHT CHESS QUEENS ON AN 8×8 CHESSBOARD SO THAT NO TWO QUEENS THREATEN EACH OTHER
8 queens problem; 8 queens puzzle; Eight queens problem; 8 queens; N-queens problem; N queens puzzle; N-queens; Eight-queens problem; N queens; N queens problem; Chessboard quiz; Eight queens; Queens problem; Eight queen problem; 8-Queens Problem; N Queens; Nqueens; Queen's independence problem; Eight-queens puzzle; N-Queens problem; Eight Queens puzzle; N-Queens; 8-queens
<algorithm> A puzzle in which one has to place eight queens on a chessboard such that no queen is attacking any other, i.e. no two queens occupy the same row, column or diagonal. One may have to produce all possible such configurations or just one. It is a common students assignment to devise a program to solve the eight queens puzzle. The brute force algorithm tries all 64*63*62*61*60*59*58*57 = 178,462,987,637,760 possible layouts of eight pieces on a chessboard to see which ones meet the criterion. More intelligent algorithms use the fact that there are only ten positions for the first queen that are not reflections of each other, and that the first queen leaves at most 42 safe squares, giving only 10*42*41*40*39*38*37*36 = 1,359,707,731,200 layouts to try, and so on. The puzzle may be varied with different number of pieces and different size boards. [Best algorithm?] (1999-07-28)

Википедия

Queens—Lunenburg

Queens—Lunenburg was a federal electoral district in the province of Nova Scotia, Canada, that was represented in the House of Commons of Canada from 1925 to 1949 and from 1953 to 1968.

This riding was created in 1924 from parts of Lunenburg and Shelburne and Queen's ridings. It consisted of the counties of Queens and Lunenburg. It was abolished in 1947 when it was redistributed into Lunenburg and Queens—Shelburne ridings.

The district was re-created in 1952 from Lunenburg and Queens—Shelburne, and was abolished in 1966 when it was merged into South Shore riding.